Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.120
Filtrar
1.
PLoS One ; 19(4): e0297905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557966

RESUMO

PURPOSE: Obesity is a strong risk factor for many diseases, with controversy regarding the cause(s) of tuberculosis (TB) reflected by contradictory findings. Therefore, a larger sample population is required to determine the relationship between obesity and TB, which may further inform treatment. METHODS: Obesity-related indicators and TB mutation data were obtained from a genome-wide association study database, while representative instrumental variables (IVs) were obtained by screening and merging. Causal relationships between exposure factors and outcomes were determined using two-sample Mendelian randomization (MR) analysis. Three tests were used to determine the representativeness and stability of the IVs, supported by sensitivity analysis. RESULTS: Initially, 191 single nucleotide polymorphisms were designated as IVs by screening, followed by two-sample MR analysis, which revealed the causal relationship between waist circumference [odds ratio (OR): 2.13 (95% confidence interval (CI): 1.19-3.80); p = 0.011] and TB. Sensitivity analysis verified the credibility of the IVs, none of which were heterogeneous or horizontally pleiotropic. CONCLUSION: The present study determined the causal effect between waist circumference and TB by two-sample MR analysis and found both to be likely to be potential risk factors.


Assuntos
Estudo de Associação Genômica Ampla , Tuberculose , Humanos , Análise da Randomização Mendeliana , Obesidade/complicações , Obesidade/genética , Tuberculose/complicações , Tuberculose/epidemiologia , Tuberculose/genética , Fatores de Risco , Polimorfismo de Nucleotídeo Único
2.
Clin Transl Sci ; 17(4): e13795, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38629592

RESUMO

N-acetyltransferase 2 (NAT2) genetic polymorphisms might alter isoniazid metabolism leading to toxicity. We reviewed the impact of NAT2 genotype status on the pharmacokinetics, efficacy, and safety of isoniazid, a treatment for tuberculosis (TB). A systematic search for research articles published in Scopus, PubMed, and Embase until August 31, 2023, was conducted without filters or limits on the following search terms and Boolean operators: "isoniazid" AND "NAT2." Studies were selected if NAT2 phenotypes with pharmacokinetics or efficacy or safety of isoniazid in patients with TB were reported. Patient characteristics, NAT2 status, isoniazid pharmacokinetic parameters, early treatment failure, and the prevalence of drug-induced liver injury were extracted. If the data were given as a median, these values were standardized to the mean. Forty-one pharmacokinetics and 53 safety studies were included, but only one efficacy study was identified. The average maximum concentrations of isoniazid were expressed as supratherapeutic concentrations in adults (7.16 ± 4.85 µg/mL) and children (6.43 ± 3.87 µg/mL) in slow acetylators. The mean prevalence of drug-induced liver injury was 36.23 ± 19.84 in slow acetylators, which was significantly different from the intermediate (19.49 ± 18.20) and rapid (20.47 ± 20.68) acetylators. Subgroup analysis by continent showed that the highest mean drug-induced liver injury prevalence was in Asian slow acetylators (42.83 ± 27.61). The incidence of early treatment failure was decreased by genotype-guided isoniazid dosing in one study. Traditional weight-based dosing of isoniazid in most children and adults yielded therapeutic isoniazid levels (except for slow acetylators). Drug-induced liver injury was more commonly observed in slow acetylators. Genotype-guided dosing may prevent early treatment failure.


Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Adulto , Criança , Humanos , Isoniazida/efeitos adversos , Antituberculosos/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose/genética , Polimorfismo Genético , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Genótipo , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo
3.
BMC Genomics ; 25(1): 249, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448842

RESUMO

BACKGROUND: Iron plays a crucial role in the growth of Mycobacterium tuberculosis (M. tuberculosis). However, the precise regulatory mechanism governing this system requires further elucidation. Additionally, limited studies have examined the impact of gene mutations related to iron on the transmission of M. tuberculosis globally. This research aims to investigate the correlation between mutations in iron-related genes and the worldwide transmission of M. tuberculosis. RESULTS: A total of 13,532 isolates of M. tuberculosis were included in this study. Among them, 6,104 (45.11%) were identified as genomic clustered isolates, while 8,395 (62.04%) were classified as genomic clade isolates. Our results showed that a total of 12 single nucleotide polymorphisms (SNPs) showed a positive correlation with clustering, such as Rv1469 (ctpD, C758T), Rv3703c (etgB, G1122T), and Rv3743c (ctpJ, G676C). Additionally, seven SNPs, including Rv0104 (T167G, T478G), Rv0211 (pckA, A302C), Rv0283 (eccB3, C423T), Rv1436 (gap, G654T), ctpD C758T, and etgB C578A, demonstrated a positive correlation with transmission clades across different countries. Notably, our findings highlighted the positive association of Rv0104 T167G, pckA A302C, eccB3 C423T, ctpD C758T, and etgB C578A with transmission clades across diverse regions. Furthermore, our analysis identified 78 SNPs that exhibited significant associations with clade size. CONCLUSIONS: Our study reveals the link between iron-related gene SNPs and M. tuberculosis transmission, offering insights into crucial factors influencing the pathogenicity of the disease. This research holds promise for targeted strategies in prevention and treatment, advancing research and interventions in this field.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Sequenciamento Completo do Genoma , Ferro , Mutação , Tuberculose/genética
4.
PLoS Pathog ; 20(3): e1011663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498580

RESUMO

New drugs are needed to shorten and simplify treatment of tuberculosis caused by Mycobacterium tuberculosis. Metabolic pathways that M. tuberculosis requires for growth or survival during infection represent potential targets for anti-tubercular drug development. Genes and metabolic pathways essential for M. tuberculosis growth in standard laboratory culture conditions have been defined by genome-wide genetic screens. However, whether M. tuberculosis requires these essential genes during infection has not been comprehensively explored because mutant strains cannot be generated using standard methods. Here we show that M. tuberculosis requires the phenylalanine (Phe) and de novo purine and thiamine biosynthetic pathways for mammalian infection. We used a defined collection of M. tuberculosis transposon (Tn) mutants in essential genes, which we generated using a custom nutrient-rich medium, and transposon sequencing (Tn-seq) to identify multiple central metabolic pathways required for fitness in a mouse infection model. We confirmed by individual retesting and complementation that mutations in pheA (Phe biosynthesis) or purF (purine and thiamine biosynthesis) cause death of M. tuberculosis in the absence of nutrient supplementation in vitro and strong attenuation in infected mice. Our findings show that Tn-seq with defined Tn mutant pools can be used to identify M. tuberculosis genes required during mouse lung infection. Our results also demonstrate that M. tuberculosis requires Phe and purine/thiamine biosynthesis for survival in the host, implicating these metabolic pathways as prime targets for the development of new antibiotics to combat tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Tuberculose/genética , Mutação , Mycobacterium tuberculosis/genética , Redes e Vias Metabólicas/genética , Tiamina , Purinas , Mamíferos
5.
Arch Microbiol ; 206(4): 177, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494532

RESUMO

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infection, has persisted as a major global public health threat for millennia. Until now, TB continues to challenge efforts aimed at controlling it, with drug resistance and latent infections being the two main factors hindering treatment efficacy. The scientific community is still striving to understand the underlying mechanisms behind Mtb's drug resistance and latent infection. DNA methylation, a critical epigenetic modification occurring throughout an individual's growth and development, has gained attention following advances in high-throughput sequencing technologies. Researchers have observed abnormal DNA methylation patterns in the host genome during Mtb infection. Given the escalating issue of drug-resistant Mtb, delving into the role of DNA methylation in TB's development is crucial. This review article explores DNA methylation's significance in human growth, development and disease, and its role in regulating Mtb's evolution and infection processes. Additionally, it discusses potential applications of DNA methylation research in tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Metilação de DNA , Antituberculosos , Tuberculose/tratamento farmacológico , Tuberculose/genética , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética
6.
Front Immunol ; 15: 1359178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515745

RESUMO

Introduction: The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. Methods: We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. Results: cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in uninfected condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. Discussion: These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Monócitos/metabolismo , Locos de Características Quantitativas , Tuberculose/genética , Citocinas/metabolismo
7.
PLoS Pathog ; 20(3): e1012069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452145

RESUMO

Mycobacterium tuberculosis (M.tb.) infection leads to over 1.5 million deaths annually, despite widespread vaccination with BCG at birth. Causes for the ongoing tuberculosis endemic are complex and include the failure of BCG to protect many against progressive pulmonary disease. Host genetics is one of the known factors implicated in susceptibility to primary tuberculosis, but less is known about the role that host genetics plays in controlling host responses to vaccination against M.tb. Here, we addressed this gap by utilizing Diversity Outbred (DO) mice as a small animal model to query genetic drivers of vaccine-induced protection against M.tb. DO mice are a highly genetically and phenotypically diverse outbred population that is well suited for fine genetic mapping. Similar to outcomes in people, our previous studies demonstrated that DO mice have a wide range of disease outcomes following BCG vaccination and M.tb. challenge. In the current study, we used a large population of BCG-vaccinated/M.tb.-challenged mice to perform quantitative trait loci mapping of complex infection traits; these included lung and spleen M.tb. burdens, as well as lung cytokines measured at necropsy. We found sixteen chromosomal loci associated with complex infection traits and cytokine production. QTL associated with bacterial burdens included a region encoding major histocompatibility antigens that are known to affect susceptibility to tuberculosis, supporting validity of the approach. Most of the other QTL represent novel associations with immune responses to M.tb. and novel pathways of cytokine regulation. Most importantly, we discovered that protection induced by BCG is a multigenic trait, in which genetic loci harboring functionally-distinct candidate genes influence different aspects of immune responses that are crucial collectively for successful protection. These data provide exciting new avenues to explore and exploit in developing new vaccines against M.tb.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Humanos , Animais , Camundongos , Vacina BCG/genética , Tuberculose/genética , Tuberculose/prevenção & controle , Tuberculose/microbiologia , Vacinas contra a Tuberculose/genética , Vacinação , Loci Gênicos , Citocinas/genética , Antígenos de Bactérias
8.
Comput Biol Med ; 171: 108187, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402840

RESUMO

BACKGROUND: Emerging evidence suggests that aberrant alternative splicing (AS) may play an important role in tuberculosis (TB). However, current knowledge regarding the value of AS in TB progression and prognosis remains unclear. METHOD: Public RNA-seq datasets related to TB progression and prognosis were searched and AS analyses were conducted based on SUPPA2. Percent spliced in (PSI) was used for quantifying AS events and multiple machine learning (ML) methods were employed to construct predictive models. Area under curve (AUC), sensitivity and specificity were calculated to evaluate the model performance. RESULTS: A total of 1587 samples from 7 datasets were included. Among 923 TB-progression related differential AS events (DASEs), 3 events (GET1-skipping exon (SE), TPD52-alternative first exons (AF) and TIMM10-alternative 5' splice site (A5)) were selected as candidate biomarkers; however, their predictive performance was limited. For TB prognosis, 5 events (PHF23-AF, KIF1B-SE, MACROD2-alternative 3' splice site (A3), CD55-retained intron (RI) and GALNT11-AF) were selected as candidates from the 1282 DASEs. Six ML methods were used to integrate these 5 events and XGBoost outperformed than others. AUC, sensitivity and specificity of XGBoost model were 0.875, 81.1% and 83.5% in training set, while they were 0.805, 68.4% and 73.2% in test set. CONCLUSION: GET1-SE, TPD52-AF and TIMM10-A5 showed limited role in predicting TB progression, while PHF23-AF, KIF1B-SE, MACROD2-A3, CD55-RI and GALNT11-AF could well predict TB prognosis and work as candidate biomarkers. This work preliminarily explored the value of AS in predicting TB progression and prognosis and offered potential targets for further research.


Assuntos
Processamento Alternativo , Tuberculose , Humanos , Processamento Alternativo/genética , Sítios de Splice de RNA , Tuberculose/diagnóstico , Tuberculose/genética , RNA-Seq , Biomarcadores , Proteínas de Neoplasias , Proteínas de Homeodomínio
9.
Front Public Health ; 12: 1249880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38317798

RESUMO

Introduction: Numerous studies suggest that the risk of tuberculosis (TB) is linked to gene polymorphisms of the interleukin-12 receptor b subunit 1 (IL12RB1), but the association between IL12RB1 polymorphisms and TB susceptibility has not been thoroughly investigated. Methods: A meta-analysis was conducted based on eight case-control studies with 10,112 individuals to further explore this topic. A systematic search of PubMed, Web of Science, Excerpt Medica Database, and Google Scholar up until April 6th, 2023 was performed. ORs and 95% CIs were pooled using the random-effect model. The epidemiological credibility of all significant associations was assessed using the Venice criteria and false-positive report probability (FPRP) analyses. Results: The IL12RB1 rs11575934 and rs401502 showed solid evidence of no significant association with TB susceptibility. However, a weak association was observed between the IL12RB1 rs375947 biomarker and pulmonary tuberculosis (PTB) susceptibility (OR = 1.64, 95% CI: 1.22, 2.21). Discussion: These findings should be confirmed through larger, better-designed studies to clarify the relationship between biomarkers in IL12RB1 gene and different types of TB susceptibility.


Assuntos
Predisposição Genética para Doença , Tuberculose , Humanos , Receptores de Interleucina-12/genética , Tuberculose/genética , Polimorfismo Genético , Fatores de Risco
10.
Exp Mol Med ; 56(3): 570-582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424191

RESUMO

Anti-tuberculosis (AT) medications, including isoniazid (INH), can cause drug-induced liver injury (DILI), but the underlying mechanism remains unclear. In this study, we aimed to identify genetic factors that may increase the susceptibility of individuals to AT-DILI and to examine genetic interactions that may lead to isoniazid (INH)-induced hepatotoxicity. We performed a targeted sequencing analysis of 380 pharmacogenes in a discovery cohort of 112 patients (35 AT-DILI patients and 77 controls) receiving AT treatment for active tuberculosis. Pharmacogenome-wide association analysis was also conducted using 1048 population controls (Korea1K). NAT2 and ATP7B genotypes were analyzed in a replication cohort of 165 patients (37 AT-DILI patients and 128 controls) to validate the effects of both risk genotypes. NAT2 ultraslow acetylators (UAs) were found to have a greater risk of AT-DILI than other genotypes (odds ratio [OR] 5.6 [95% confidence interval; 2.5-13.2], P = 7.2 × 10-6). The presence of ATP7B gene 832R/R homozygosity (rs1061472) was found to co-occur with NAT2 UA in AT-DILI patients (P = 0.017) and to amplify the risk in NAT2 UA (OR 32.5 [4.5-1423], P = 7.5 × 10-6). In vitro experiments using human liver-derived cell lines (HepG2 and SNU387 cells) revealed toxic synergism between INH and Cu, which were strongly augmented in cells with defective NAT2 and ATP7B activity, leading to increased mitochondrial reactive oxygen species generation, mitochondrial dysfunction, DNA damage, and apoptosis. These findings link the co-occurrence of ATP7B and NAT2 genotypes to the risk of INH-induced hepatotoxicity, providing novel mechanistic insight into individual AT-DILI susceptibility. Yoon et al. showed that individuals who carry NAT2 UAs and ATP7B 832R/R genotypes are at increased risk of developing isoniazid hepatotoxicity, primarily due to the increased synergistic toxicity between isoniazid and copper, which exacerbates mitochondrial dysfunction-related apoptosis.


Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Doenças Mitocondriais , Tuberculose , Humanos , Antituberculosos/efeitos adversos , Antituberculosos/toxicidade , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Cobre/toxicidade , Genótipo , Isoniazida/toxicidade , Tuberculose/tratamento farmacológico , Tuberculose/genética
11.
Expert Rev Clin Pharmacol ; 17(3): 263-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287694

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) in the N-acetyltransferase 2 (NAT2) gene as well as several other clinical factors can contribute to the elevation of liver function test values in tuberculosis (TB) patients receiving antitubercular therapy (ATT). RESEARCH DESIGN AND METHODS: A prospective study involving dynamic monitoring of the liver function tests among 130 TB patients from baseline to 98 days post ATT initiation was undertaken to assess the influence of pharmacogenomic and clinical variables on the elevation of liver function test values. Genomic DNA was extracted from serum samples for the assessment of NAT2 SNPs. Further, within this study population, we conducted a case control study to identify the odds of developing ATT-induced drug-induced liver injury (DILI) based on NAT2 SNPs, genotype and phenotype, and clinical variables. RESULTS: NAT2 slow acetylators had higher mean [90%CI] liver function test values for 8-28 days post ATT and higher odds of developing DILI (OR: 2.73, 90%CI: 1.05-7.09) than intermediate acetylators/rapid acetylators. CONCLUSION: The current study findings provide evidence for closer monitoring among TB patients with specific NAT2 SNPs, genotype and phenotype, and clinical variables, particularly between the period of more than a week to one-month post ATT initiation for better treatment outcomes.


Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Humanos , Estudos de Casos e Controles , Estudos Prospectivos , Arilamina N-Acetiltransferase/genética , Tuberculose/tratamento farmacológico , Tuberculose/genética , Tuberculose/epidemiologia , Antituberculosos/efeitos adversos , Genótipo , Doença Hepática Induzida por Substâncias e Drogas/genética , Polimorfismo de Nucleotídeo Único , Acetiltransferases/genética , Acetiltransferases/uso terapêutico
12.
Elife ; 132024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224499

RESUMO

The heritability of susceptibility to tuberculosis (TB) disease has been well recognized. Over 100 genes have been studied as candidates for TB susceptibility, and several variants were identified by genome-wide association studies (GWAS), but few replicate. We established the International Tuberculosis Host Genetics Consortium to perform a multi-ancestry meta-analysis of GWAS, including 14,153 cases and 19,536 controls of African, Asian, and European ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic h2 = 26.3%, 95% CI 23.7-29.0%) for susceptibility to TB that is shared across ancestries, highlighting an important host genetic influence on disease. We identified one global host genetic correlate for TB at genome-wide significance (p<5 × 10-8) in the human leukocyte antigen (HLA)-II region (rs28383206, p-value=5.2 × 10-9) but failed to replicate variants previously associated with TB susceptibility. These data demonstrate the complex shared genetic architecture of susceptibility to TB and the importance of large-scale GWAS analysis across multiple ancestries experiencing different levels of infection pressure.


Assuntos
Predisposição Genética para Doença , Tuberculose , Humanos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Tuberculose/genética , Grupos Raciais/genética
13.
Int J Biol Macromol ; 260(Pt 2): 129331, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218299

RESUMO

Tuberculosis (TB), a leading cause of mortality globally, is a chronic infectious disease caused by Mycobacterium tuberculosis that primarily infiltrates the lung. The mature crRNAs in M. tuberculosis transcribed from the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus exhibit an atypical structure featured with 5' and 3' repeat tags at both ends of the intact crRNA, in contrast to typical Type-III-A crRNAs that possess 5' repeat tags and partial crRNA sequences. However, this structural peculiarity particularly concerning the specific binding characteristics of the 3' repeat end within the mature crRNA within the Csm complex, has not been comprehensively elucidated. Here, our Mycobacteria CRISPR-Csm complexes structure represents the largest Csm complex reported to date. It incorporates an atypical Type-III-A CRISPR RNA (crRNA) (46 nt) with 5' 8-nt and 3' 4-nt repeat sequences in the stoichiometry of Mycobacteria Csm1125364151. The PAM-independent single-stranded RNAs (ssRNAs) are the most suitable substrate for the Csm complex. The 3'-repeat end trimming of mature crRNA was not necessary for its cleavage activity in Type-III-A Csm complex. Our work broadens our understanding of the Type-III-A Csm complex and identifies another mature crRNA processing mechanism in the Type-III-A CRISPR-Cas system based on structural biology.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , RNA Guia de Sistemas CRISPR-Cas , RNA Bacteriano/genética , Sistemas CRISPR-Cas/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculose/genética
14.
Infect Genet Evol ; 118: 105559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266757

RESUMO

BACKGROUND: In this study, we have identified multiple mutations in the IL-12R1 gene among Pakistani patients who have inherited them through consanguineous marriages. These patients have experienced severe Bacille-Calmette-Guérin (BCG) infection as well as recurrent tuberculosis. We will demonstrate the pivotal role of interleukin (IL)-12/interferon (IFN)-γ axis in the regulation of mycobacterial diseases. METHODOLOGY: First, we checked the patients' medical records, and then afterward, we assessed interferon-gamma (IFN-γ) production through ELISA. Following that, DNA was extracted to investigate IL-12/IFN- abnormalities. Whole exome sequencing was conducted through Sanger sequencing. Secretory cytokine levels were compared from healthy control of the same age groups and they were found to be considerably less in the disease cohort. To evaluate the probable functional impact of these alterations, an in silico study was performed. RESULTS: The study found that the patients' PBMCs produced considerably less IFN-γ than expected. Analysis using flow cytometry showed that activated T cells lacked surface expression of IL-12Rß1. Exon 7 of the IL-12Rß1 gene, which encodes a portion of the cytokine binding region (CBR), and exon 10, which encodes the fibronectin-type III (FNIII) domain, were found to have the mutations c.641 A > G; p.Q214R and c.1094 T > C; p.M365T, respectively. In silico analysis showed that these mutations likely to have a deleterious effect on protein function. CONCLUSION: Our findings indicate the significant contribution of the IL-12/IFN-γ is in combating infections due to mycobacterium. Among Pakistani patients born to consanguineous marriages, the identified mutations in the IL-12Rß-1 gene provide insights into the genetic basis of severe BCG infections and recurrent tuberculosis. The study highlights the potential utility of newborn screening in regions with mandatory BCG vaccination, enabling early detection and intervention for primary immunodeficiencies associated with mycobacterial infections. Moreover, the study suggests at the potential role of other related genes such as IL-23Rß1, TYK2, or JAK2 in IFN-γ production, warranting further investigation.


Assuntos
Vacina BCG , Tuberculose , Recém-Nascido , Humanos , Consanguinidade , Sequenciamento do Exoma , Incidência , Receptores de Interleucina-12/genética , Tuberculose/epidemiologia , Tuberculose/genética , Interleucina-12/genética , Interleucina-12/metabolismo , Citocinas/genética , Interferon gama/metabolismo
15.
Respir Res ; 25(1): 16, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178098

RESUMO

BACKGROUND: Growing evidence from observational studies and clinical trials suggests that the gut microbiota is associated with tuberculosis (TB). However, it is unclear whether any causal relationship exists between them and whether causality is bidirectional. METHODS: A bidirectional two-sample Mendelian randomization (MR) analysis was performed. The genome-wide association study (GWAS) summary statistics of gut microbiota were obtained from the MiBioGen consortium, while the GWAS summary statistics of TB and its specific phenotypes [respiratory tuberculosis (RTB) and extrapulmonary tuberculosis (EPTB)] were retrieved from the UK Biobank and the FinnGen consortium. And 195 bacterial taxa from phylum to genus were analyzed. Inverse variance weighted (IVW), MR-Egger regression, maximum likelihood (ML), weighted median, and weighted mode methods were applied to the MR analysis. The robustness of causal estimation was tested using the heterogeneity test, horizontal pleiotropy test, and leave-one-out method. RESULTS: In the UK Biobank database, we found that 11 bacterial taxa had potential causal effects on TB. Three bacterial taxa genus.Akkermansia, family.Verrucomicrobiacea, order.Verrucomicrobiales were validated in the FinnGen database. Based on the results in the FinnGen database, the present study found significant differences in the characteristics of gut microbial distribution between RTB and EPTB. Four bacterial taxa genus.LachnospiraceaeUCG010, genus.Parabacteroides, genus.RuminococcaceaeUCG011, and order.Bacillales were common traits in relation to both RTB and TB, among which order.Bacillales showed a protective effect. Additionally, family.Bacteroidacea and genus.Bacteroides were identified as common traits in relation to both EPTB and TB, positively associating with a higher risk of EPTB. In reverse MR analysis, no causal association was identified. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. CONCLUSION: Our study supports a one-way causal relationship between gut microbiota and TB, with gut microbiota having a causal effect on TB. The identification of characteristic gut microbiota provides scientific insights for the potential application of the gut microbiota as a preventive, diagnostic, and therapeutic tool for TB.


Assuntos
Microbioma Gastrointestinal , Tuberculose Pulmonar , Tuberculose , Humanos , Microbioma Gastrointestinal/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/genética
16.
Pharmacogenomics ; 25(1): 21-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38131213

RESUMO

The study analyzes the risk factors associated with antituberculosis drug-induced liver injury (ATB-DILI), and the relationship between ATB-DILI and NAT2 gene polymorphisms. Out of the 324 included patients, 57 (17.59%) developed ATB-DILI. Age, history of liver disease, alcohol consumption and timing of antituberculosis (ATB) treatment were independent risk factors for ATB-DILI in the patients with tuberculosis (TB; p < 0.05). There was a significant difference in the distribution of NAT2 metabolic phenotypes between the study group and the control group (p < 0.05). The ATB drug treatment for pulmonary TB can cause a high incidence of ATB-DILI. Age, history of liver disease, alcohol consumption and timing of ATB treatment are independent risk factors for ATB-DILI in patients with TB.


Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Tuberculose , Humanos , Antituberculosos/efeitos adversos , Arilamina N-Acetiltransferase/genética , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Tuberculose/tratamento farmacológico , Tuberculose/genética , Tuberculose/complicações , Genótipo , Fatores de Risco
17.
World J Microbiol Biotechnol ; 40(1): 32, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057660

RESUMO

Para-amino salicylic acid (PAS) was first reported by Lehmann in 1946 and used for tuberculosis treatment. However, due to its adverse effects, it is now used only as a second line anti-tuberculosis drug for treatment of multidrug resistant or extensively drug resistant M. tuberculosis. The structure of PAS is similar to para-amino benzoic acid (pABA), an intermediate metabolite in the folate synthesis pathway. The study has identified mutations in genes in folate pathway and their intergenic regions for their possibilities in responsible for PAS resistance. Genomic DNA from 120 PAS-resistant and 49 PAS-sensitive M. tuberculosis isolated from tuberculosis patients in Thailand were studied by whole genome sequencing. Twelve genes in the folate synthesis pathway were investigated for variants associated with PAS resistance. Fifty-one SNVs were found in nine genes and their intergenic regions (pabC, pabB, folC, ribD, thyX, dfrA, thyA, folK, folP). Functional correlation test confirmed mutations in RibD, ThyX, and ThyA are responsible for PAS resistance. Detection of mutation in thyA, folC, intergenic regions of thyX, ribD, and double deletion of thyA dfrA are proposed for determination of PAS resistant M. tuberculosis.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Tailândia , Farmacorresistência Bacteriana , Ácido Aminossalicílico/farmacologia , Tuberculose/genética , Antituberculosos/farmacologia , Mycobacterium tuberculosis/genética , Mutação , Ácido Fólico/farmacologia , Sequenciamento Completo do Genoma , DNA Intergênico , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/genética
18.
J Biosci ; 482023.
Artigo em Inglês | MEDLINE | ID: mdl-38088376

RESUMO

Tuberculosis (TB) continues to remain at the forefront of the infectious disease burden globally, albeit with some aberrations during the COVID-19 pandemic. Among many factors, the emergence of drug resistance or antimicrobial resistance (AMR) has necessitated a renewed focus on developing novel and repurposed drugs against TB. Host-directed therapy (HDT) has emerged as an attractive alternative and a complementary strategy to the conventional antibiotic-based therapy of tuberculosis since HDT enjoys the advantage of disarming the pathogen of its ability to develop drug resistance. Considering the imminent threat of AMR across the spectrum of bacterial pathogens, HDT promises to overcome the drug shortage against superbugs. While all these make HDT a very attractive strategy, identifying the right set of host targets to develop HDT remains a challenge, despite remarkable development in the field over the past decade. In this review, we examine the host mechanisms, that either inadvertently or through targeted perturbation by the pathogen, help TB pathogenesis, and we discuss the latest developments in the targeting of some of the key pathways to achieve newer TB therapeutics.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/genética , Pandemias , Tuberculose/tratamento farmacológico , Tuberculose/genética , Tuberculose/microbiologia
19.
PLoS Genet ; 19(12): e1011070, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38100394

RESUMO

PhoP-PhoR, one of the 12 two-component systems (TCSs) that empower M. tuberculosis to sense and adapt to diverse environmental conditions, remains essential for virulence, and therefore, represents a major target to develop novel anti-TB therapies. Although both PhoP and PhoR have been structurally characterized, the signal(s) that this TCS responds to remains unknown. Here, we show that PhoR is a sensor of acidic pH/high salt conditions, which subsequently activate PhoP via phosphorylation. In keeping with this, transcriptomic data uncover that acidic pH- inducible expression of PhoP regulon is significantly inhibited in a PhoR-deleted M. tuberculosis. Strikingly, a set of PhoP regulon genes displayed a low pH-dependent activation even in the absence of PhoR, suggesting the presence of non-canonical mechanism(s) of PhoP activation. Using genome-wide interaction-based screening coupled with phosphorylation assays, we identify a non-canonical mechanism of PhoP phosphorylation by the sensor kinase PrrB. To investigate how level of P~PhoP is regulated, we discovered that in addition to its kinase activity PhoR functions as a phosphatase of P~PhoP. Our subsequent results identify the motif/residues responsible for kinase/phosphatase dual functioning of PhoR. Collectively, these results uncover that contrasting kinase and phosphatase functions of PhoR determine the homeostatic mechanism of regulation of intra-mycobacterial P~PhoP which controls the final output of the PhoP regulon. Together, these results connect PhoR to pH-dependent activation of PhoP with downstream functioning of the regulator. Thus, PhoR plays a central role in mycobacterial adaptation to low pH conditions within the host macrophage phagosome, and a PhoR-deleted M. tuberculosis remains significantly attenuated in macrophages and animal models.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Mycobacterium tuberculosis/genética , Virulência/genética , Fosforilação , Tuberculose/genética , Monoéster Fosfórico Hidrolases/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
20.
Ann Hum Biol ; 50(1): 472-479, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38117222

RESUMO

BACKGROUND: Phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) are involved in the clearance of Mycobacterium tuberculosis (MTB) by macrophages. AIM: This study aimed to investigate the effects of polymorphisms in the PI3K/AKT genes and the gene-smoking interaction on susceptibility to TB. METHODS: This case-control study used stratified sampling to randomly select 503 TB patients and 494 control subjects. Logistic regression analysis was used to determine the association between the polymorphisms and TB. Simultaneously, the marginal structure linear dominance model was used to estimate the gene-smoking interaction. RESULTS: Genotypes GA (OR 1.562), AA (OR 2.282), and GA + AA (OR 1.650) at rs3730089 of the PI3KR1 gene were significantly associated with the risk to develop TB. Genotypes AG (OR 1.460), GG (OR 2.785), and AG + GG (OR 1.622) at rs1130233 of the AKT1 gene were significantly associated with the risk to develop TB. In addition, the relative excess risk of interaction (RERI) between rs3730089 and smoking was 0.9608 (95% CI: 0.5959, 1.3256, p < 0.05), which suggests a positive interaction. CONCLUSION: We conclude that rs3730089 and rs1130233 are associated with susceptibility to TB, and there was positive interaction between rs3730089 and smoking on susceptibility to TB.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fumar , Tuberculose , Humanos , Estudos de Casos e Controles , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fumar/efeitos adversos , Fumar/genética , Tuberculose/epidemiologia , Tuberculose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...